Dependence of cathepsin L-induced coronary endothelial dysfunction upon activation of NAD(P)H oxidase.
نویسندگان
چکیده
Cathepsin L is a cysteine protease that can generate endogenous endostatin in vascular and epithelial basement membranes and importantly participates in a variety of pathophysiological processes. The present study was designed to determine whether this cathepsin L-derived endogenous endostatin alters endothelium-dependent vasodilator responses in coronary arteries via NAD(P)H oxidase activation. In isolated and perfused small bovine coronary arteries, administration of cathepsin L (200 ng/ml) markedly attenuated endothelium-dependent vasodilator responses to bradykinin or A23187 by 56.16+/-9.58% and 68.95+/-10.32%, respectively. This inhibitory effect of cathepsin L on endothelium-dependent vasodilator responses could be significantly reversed by pre-incubation of the arteries with O(2)(-) scavenger, Tiron, or neutralizing anti-endostatin antibody. By fluorescent ELISA assay, cathepsin L dose-dependently increased endostatin production in coronary arteries. In situ high-speed dual wavelength switching fluorescent microscopic imaging showed that cathepsin L decreased bradykinin- and A23187-induced NO levels in the intact endothelium, but it had no effect on Ca(2+) response to these vasodilators. This cathepsin L-induced reduction of NO was restored by the pretreatment of an anti-endostatin antibody. Electron spin resonance (ESR) analysis demonstrated that cathepsin L increased O(2)(-) production which could be markedly attenuated by the NAD(P)H oxidase inhibitors, apocynin or anti-endostatin antibody. It is concluded that endostatin could be endogenously produced in coronary arteries when cathepsin L is increased and that this cathepsin L-derived endostatin, if excessive, may result in endothelial dysfunction through enhanced production of O(2)(-) due to NAD(P)H oxidase activation.
منابع مشابه
Endostatin uncouples NO and Ca2+ response to bradykinin through enhanced O2*- production in the intact coronary endothelium.
The present study tested the hypothesis that endostatin stimulates superoxide (O2*-) production through a ceramide-mediating signaling pathway and thereby results in an uncoupling of bradykinin (BK)-induced increases in intracellular Ca2+ concentration ([Ca2+]i) from nitric oxide (NO) production in coronary endothelial cells. With the use of high-speed, wavelength-switching, fluorescence-imagin...
متن کاملMycophenolate acid inhibits endothelial NAD(P)H oxidase activity and superoxide formation by a Rac1-dependent mechanism.
Endothelial dysfunction precedes hypertension and atherosclerosis and predicts cardiac allograft vasculopathy and death in heart transplant recipients. Endothelial overproduction of reactive oxygen species, such as superoxide anions produced by NAD(P)H oxidase, induces endothelial dysfunction. Because immunosuppressive drugs have been associated with increased reactive oxygen species production...
متن کاملRole of TNF-alpha-induced reactive oxygen species in endothelial dysfunction during reperfusion injury.
We hypothesized that neutralization of TNF-alpha at the time of reperfusion exerts a salubrious role on endothelial function and reduces the production of reactive oxygen species. We employed a mouse model of myocardial ischemia-reperfusion (I/R, 30 min/90 min) and administered TNF-alpha neutralizing antibodies at the time of reperfusion. I/R elevated TNF-alpha expression (mRNA and protein), wh...
متن کاملMycophenolate Acid Inhibits Endothelial NAD(P)H Oxidase Activity and Superoxide
Endothelial dysfunction precedes hypertension and atherosclerosis and predicts cardiac allograft vasculopathy and death in heart transplant recipients. Endothelial overproduction of reactive oxygen species, such as superoxide anions produced by NAD(P)H oxidase, induces endothelial dysfunction. Because immunosuppressive drugs have been associated with increased reactive oxygen species production...
متن کاملUpregulation of TNF-alpha and Receptors Contribute to Endothelial Dysfunction in Zucker Diabetic Rats.
Diabetes mellitus is a major risk factor to impair endothelial function and induce cardiovascular diseases. TNF-alpha (TNF) is expressed during a variety of inflammatory conditions. We hypothesized that impairment in coronary endothelial function in type 2 diabetes is due to the overexpression of TNF and TNF receptors (TNFRs). Endothelium-dependent (acetylcholine, ACh) and -independent vasodila...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microvascular research
دوره 78 1 شماره
صفحات -
تاریخ انتشار 2009